Rationale and objectives: To evaluate cone-beam computed-tomography (CBCT) images of the temporal bone for radiological delineation, metal artifacts, and accuracy for localization of six different electrode arrays after cochlear device implantation.
Materials and methods: This retrospective study included 116 patients who underwent CBCT (120kV, 7.1mA) within 24 hours after cochlear device implantation. Exclusion criteria were anatomical abnormalities, and electrode misinsertion. Six different CI electrodes were implanted: Advanced Bionics HiFocus Mid-Scala, Cochlear Contour Advance, Cochlear Slim-Straight, Cochlear Slim-Modiolar, MED-EL Flex 24 and MED-EL Flex 28. Two radiologists rated independently presence of metal artifacts, overall image quality, as well as dedicated visualization of the osseous spiral lamina, inner and outer cochlear wall, single electrode contacts, and electrode position using 5-point-Likert scales. Inter-rater agreement was calculated by using Cohen's kappa and intraclass correlation.
Results: Of 116 patients, 94 (81.0%; 56.1 ± 16.9 years; age range, 13-86 years; 49 [52.1%] females) were included in the study. Overall image quality was rated good for all electrode models without significant differences (p = 0.061). Depiction of electrode contacts was rated significantly better for Advanced Bionics HiFocus Mid-Scala, Cochlear Slim-Straight, and MED-EL Flex 24 and 28 compared to Cochlear Contour Advance and Slim-Modiolar (p < 0.001). Depiction of the osseous spiral lamina (p = 0.20), inner (p = 0.42) and outer cochlear wall (p = 0.35), metal artifacts (p = 0.18), and electrode position (p = 0.31) did not show significant differences between electrode models. Inter-rater agreement varied from substantial to almost perfect (0.70-0.93).
Conclusion: CBCT provides excellent visualization of all evaluated CI electrode types, in particular electrode arrays with greater spacing between contacts and contact size allow improved radiologic evaluation.
Keywords: Cochlear implant; Cone-Beam Computed Tomography; Electrode array type; Postoperative imaging.
Copyright © 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.