Background: To explore the performance of a computed tomography based radiomics model in the preoperative prediction of resectability status and TNM staging in thymic epithelial tumors.
Methods: We reviewed the last preoperative computed tomography scan of patients with thymic epithelial tumors prior to resection and pathology evaluation at our institution between February 2008 and June 2019. A total of 101 quantitative features were extracted and a radiomics model was trained using elastic net penalized logistic regressions for each aim. In the set-aside testing sets, discriminating performance of each model was assessed with area under receiver operating characteristic curve.
Results: Our final population consisted of 243 patients with: 153 (87%) thymomas, 23 (9%) thymic carcinomas, and 9 (4%) thymic carcinoids. Incomplete resections (R1 or R2) occurred in 38 (16%) patients, and 67 (28%) patients had more advanced stage tumors (stage III or IV). In the set-aside testing sets, the radiomics model achieved good performance in preoperatively predicting incomplete resections (area under receiver operating characteristic curve: 0.80) and advanced stage tumors (area under receiver operating characteristic curve: 0.70).
Conclusions: Our computed tomography radiomics model achieved good performance to predict resectability status and staging in thymic epithelial tumors, suggesting a potential value for the evaluation of radiomic features in the preoperative prediction of surgical outcomes in thymic malignancies.
Copyright © 2022 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.