The efficiency of laccase-catalyzed protein cross-linking can be impacted by substrate protein structure and competing reactions. In this study, chemical grafting of ferulic acid (FA) on protein surface was applied to modulate the cross-linking of two inflexible globular proteins, lysozyme (LZM) and ovalbumin (OVA). The extent of FA-grafting was positively correlated with protein cross-linking extent, and determined the molecular weight profile and structures of the cross-linked product. While laccase-catalyzed reactions (with or without free FA mediator) did not lead to evident cross-linking of the native proteins, oligomeric (up to 16.4%), polymeric (up to 30.6%) FA-LZMs and oligomeric FA-OVA (5.1-31.1%) were obtained upon the enzymatic treatments. The cross-linking on the grafted FA sites occurred mainly through the formation of 8-5'-noncyclic-dehydro-diferulic linkages. The effects of investigated cross-linking approach on the emulsifying, foaming properties and the immunoglobulin E (IgE) binding capacity of LZM and OVA were also evaluated in relation to the structural properties of cross-linked proteins.
Keywords: Ferulic acid-modified proteins; Functionalities; IgE binding; Laccase; Lysozyme; Ovalbumin; Oxidative cross-linking; Structural properties.
Copyright © 2021 Elsevier Ltd. All rights reserved.