Gene-regulatory networks achieve complex mappings of inputs to outputs through mechanisms that are poorly understood. We found that in the galactose-responsive pathway in Saccharomyces cerevisiae, the decision to activate the transcription of genes encoding pathway components is controlled independently from the expression level, resulting in behavior resembling that of a mechanical dimmer switch. This was not a direct result of chromatin regulation or combinatorial control at galactose-responsive promoters; rather, this behavior was achieved by hierarchical regulation of the expression and activity of a single transcription factor. Hierarchical regulation is ubiquitous, and thus dimmer switch regulation is likely a key feature of many biological systems. Dimmer switch gene regulation may allow cells to fine-tune their responses to multi-input environments on both physiological and evolutionary time scales.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.