Quantitative mapping of the cellular small RNA landscape with AQRNA-seq

Nat Biotechnol. 2021 Aug;39(8):978-988. doi: 10.1038/s41587-021-00874-y. Epub 2021 Apr 15.

Abstract

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Line, Tumor
  • Gene Library
  • Humans
  • MicroRNAs* / chemistry
  • MicroRNAs* / genetics
  • Neoplasms / genetics
  • Neoplasms / metabolism
  • RNA, Bacterial / chemistry
  • RNA, Bacterial / genetics
  • RNA, Transfer / chemistry
  • RNA, Transfer / genetics
  • Sequence Alignment / methods*
  • Sequence Analysis, RNA / methods*

Substances

  • MicroRNAs
  • RNA, Bacterial
  • RNA, Transfer