On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction

J Biomech Eng. 2021 Sep 1;143(9):094503. doi: 10.1115/1.4050915.

Abstract

Myofibroblasts are responsible for wound healing and tissue repair across all organ systems. In periods of growth and disease, myofibroblasts can undergo a phenotypic transition characterized by an increase in extracellular matrix (ECM) deposition rate, changes in various protein expression (e.g., alpha-smooth muscle actin (αSMA)), and elevated contractility. Cell shape is known to correlate closely with stress-fiber geometry and function and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in three-dimensional (3D) environments is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVIC) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly(ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and submicron fluorescent microspheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor ⟨U⟩ for the volume occupied by the AVIC, which had three distinct eigenvalues (λ1,2,3=1.08,0.99, and 0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel-imbedded AVICs are known to be in a stable state by 3 days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and potentially contraction level.

MeSH terms

  • Animals
  • Aortic Valve / cytology
  • Aortic Valve / physiology
  • Biomechanical Phenomena
  • Cell Shape*
  • Hydrogels / chemistry
  • Myofibroblasts* / cytology
  • Myofibroblasts* / physiology

Substances

  • Hydrogels