Stepwise collapse of a giant pore metal-organic framework

Dalton Trans. 2021 Apr 14;50(14):5011-5022. doi: 10.1039/d1dt00881a. Epub 2021 Mar 26.

Abstract

Defect engineering is a powerful tool that can be used to tailor the properties of metal-organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal-linker bonds, generating additional coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially retained, even in the amorphised material. We find that solvents can be used to stabilise the MIL-100 (Fe) framework against collapse, which leads to a substantial retention of porosity over the non-stabilised material.