Background: Obesity has a strong association with the risk of developing cognitive impairment and dementia at a later age. Brain-derived neurotrophic factor (BDNF) and its receptor appear to be important components in cognitive function and are also involved in energy homeostasis. The level of circulating BDNF and its association with cognition has yet to be delineated clearly. In this work we studied the association of circulating BDNF with cognition among the adult obese population.
Methods: The study involved 132 healthy participants between 18 and 40 years of age and of both sexes. The participants were categorized into an obesity group (n=66) and a non-obese group (n=66) based on their body mass index (Asian criteria). The level of cognitive performance was assessed by the event-related potentials P300 (ERPs-P300), mini-mental state examination (MMSE), both visual and auditory reaction times (VRT and ART, respectively), and other pen and paper tests related to memory and executive function. Serum BDNF, glycemic and lipid profiles were estimated.
Results: We found significant differences in the ERPs-P300 latency (P<0.001) and amplitude (P=0.002) between the non-obese and obese group. The MMSE score was significantly reduced while VRT (P=0.005) and ART (P=0.001) were larger in the obese group. BDNF levels (P<0.001) were significantly reduced and negatively associated with the obese group. ERPs-P300 latency was negatively associated (r=-0.674, P=0.001) whereas amplitude (r=0.507, P<0.001) was positively associated with the BDNF levels in the adult obese population.
Conclusion: We found reduced circulating BDNF levels in obese adults and that lower BDNF levels were strongly associated with cognitive decline in the obese adult population.
Keywords: BDNF receptor; Brain-derived neurotrophic factor; Cognition; Event-related potentials-P300; Mini-mental state examination; Obesity; Reaction time.