The performance of asymmetric supercapacitors (ASCs) is limited by the poorly matched electrochemical kinetics of available electrode materials, which generally results in reduced energy density and inadequate voltage utilization. Herein, a porous conductive graphene aerogel (GA) scaffold was decorated with copper cobalt selenide ((CuCo)Se2) or iron selenide (FeSe2) to construct positive and negative electrodes, respectively. The (CuCo)Se2/GA and FeSe2/GA electrodes exhibited high specific capacitances of 672 and 940 F g-1, respectively, at 1 A g-1. The capacitance contributions from the Co3+/Co2+ and Fe3+/Fe2+ redox couple for the positive and negative electrodes were determined to elucidate the energy storage mechanism. Furthermore, the kinetics study of the two electrodes was performed, revealing b values ranging between 0.7 and 1 at various scan rates and demonstrating that the surface-controlled processes played the dominant role, leading to fast charge storage capability for both electrodes. Fabrication of an ASC device with a configuration of (CuCo)Se2/GA//FeSe2/GA resulted in a voltage of 1.6 V, a high energy density of 39 W h kg-1, and a power density of 702 W kg-1. The excellent electrochemical performances of the (CuCo)Se2/GA and FeSe2/GA electrodes demonstrate their potential applications in energy storage devices.