Background: The newly discovered reversible N6-methyladenosine (m6A) modification plays an important regulatory role in gene expression. Long non-coding RNAs (lncRNAs) participate in Marek's disease virus (MDV) replication but how m6A modifications in lncRNAs are affected during MDV infection is currently unknown. Herein, we profiled the transcriptome-wide m6A modification in lncRNAs in MDV-infected chicken embryo fibroblast (CEF) cells.
Results: Methylated RNA immunoprecipitation sequencing results revealed that the lncRNA m6A modification is highly conserved with MDV infection increasing the expression of lncRNA m6A modified sites compared to uninfected cell controls. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that lncRNA m6A modifications were highly associated with signaling pathways associated with MDV infection.
Conclusions: In this study, the alterations seen in transcriptome-wide m6A occurring in lncRNAs following MDV-infection suggest this process plays important regulatory roles during MDV replication. We report for the first time profiling of the alterations in transcriptome-wide m6A modification in lncRNAs of MDV-infected CEF cells.
Keywords: KEGG; Long non-coding RNA; Marek’s disease virus; MeRIP-Seq; m6A.