Finding associations in a heterogeneous setting: statistical test for aberration enrichment

Genome Med. 2021 Apr 23;13(1):68. doi: 10.1186/s13073-021-00864-4.

Abstract

Most two-group statistical tests find broad patterns such as overall shifts in mean, median, or variance. These tests may not have enough power to detect effects in a small subset of samples, e.g., a drug that works well only on a few patients. We developed a novel statistical test targeting such effects relevant for clinical trials, biomarker discovery, feature selection, etc. We focused on finding meaningful associations in complex genetic diseases in gene expression, miRNA expression, and DNA methylation. Our test outperforms traditional statistical tests in simulated and experimental data and detects potentially disease-relevant genes with heterogeneous effects.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Area Under Curve
  • Case-Control Studies
  • Computer Simulation
  • DNA Methylation / genetics
  • Gene Expression Regulation
  • Genetic Association Studies*
  • Genetic Heterogeneity
  • Genetic Predisposition to Disease
  • Genomics
  • Humans
  • MicroRNAs / genetics
  • MicroRNAs / metabolism
  • Models, Statistical*

Substances

  • MicroRNAs