The hydrophobicity of a drug can be a major challenge in its development and prevents the clinical translation of highly potent anti-cancer agents. We have used a lipid-based nanoemulsion termed Lipid-Oil-Nanodroplets (LONDs) for the encapsulation and in vivo delivery of the poorly bioavailable combretastatin A4 (CA4). Drug delivery with CA4 LONDs was assessed in a xenograft model of colorectal cancer. LC-MS/MS analysis revealed that CA4 LONDs, administered at a drug dose four times lower than drug control, achieved equivalent concentrations of CA4 intratumorally. We then attached CA4 LONDs to microbubbles (MBs) and targeted this construct to VEGFR2. A reduction in tumor perfusion was observed in CA4 LONDs-MBs treated tumors. A combination study with irinotecan demonstrated a greater reduction in tumor growth and perfusion (P = 0.01) compared to irinotecan alone. This study suggests that LONDs, either alone or attached to targeted MBs, have the potential to significantly enhance tumor-specific hydrophobic drug delivery.
Keywords: Combretastatin A4; Lipid-Oil-Nanodroplets (LONDs); Microbubbles; Targeting; Ultrasound trigger.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.