Dengue is a tropical disease caused by the dengue virus (DENV), with an estimate of 300 million new cases every year. Due to the limited vaccine efficiency and absence of effective antiviral treatment, new drug candidates are urgently needed. DENV NS3-NS2B protease complex is essential for viral post-translational processing and maturation, and this enzyme has been extensively studied as a relevant drug target. Crystal structures often underestimate NS3-NS2B flexibility, whereas they can adopt different conformational states depending on the bound substrate. We conducted molecular dynamics simulations (∼30 μs) with a non- and covalently bound inhibitor to understand the conformational changes in the DENV-3 NS3-NS2B complex. Our results show that the open-closing movement of the protease exposes multiple druggable subpockets that can be investigated in later drug discovery efforts.
Keywords: Dengue virus; Molecular dynamics simulation; NS3-NS2B protease.
© 2021 The Authors. ChemMedChem published by Wiley-VCH GmbH.