Introduction: Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson's disease patients to improve targeting for deep brain stimulation.
Methods: We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson's disease (n = 31) and other movement disorders (n = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed.
Results: Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (>0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson's and non-Parkinson's patients for either structure.
Discussion/conclusion: Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.
Keywords: Deep brain stimulation; Image-guided neurosurgery; Magnetic resonance imaging; Parkinson’s disease; Zona incerta.
© 2021 S. Karger AG, Basel.