Cheetah: A Computational Toolkit for Cybergenetic Control

ACS Synth Biol. 2021 May 21;10(5):979-989. doi: 10.1021/acssynbio.0c00463. Epub 2021 Apr 27.

Abstract

Advances in microscopy, microfluidics, and optogenetics enable single-cell monitoring and environmental regulation and offer the means to control cellular phenotypes. The development of such systems is challenging and often results in bespoke setups that hinder reproducibility. To address this, we introduce Cheetah, a flexible computational toolkit that simplifies the integration of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an image segmentation system based on the versatile U-Net convolutional neural network. This is supplemented with functionality to robustly count, characterize, and control cells over time. We demonstrate Cheetah's core capabilities by analyzing long-term bacterial and mammalian cell growth and by dynamically controlling protein expression in mammalian cells. In all cases, Cheetah's segmentation accuracy exceeds that of a commonly used thresholding-based method, allowing for more accurate control signals to be generated. Availability of this easy-to-use platform will make control engineering techniques more accessible and offer new ways to probe and manipulate living cells.

Keywords: U-Net; cybergenetics; deep learning; image analysis; microscopy; synthetic biology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Animals
  • Cell Line
  • Computer Systems*
  • Data Accuracy
  • Deep Learning*
  • Escherichia coli / metabolism*
  • Image Processing, Computer-Assisted / methods*
  • Lab-On-A-Chip Devices
  • Mice
  • Microscopy / methods*
  • Mouse Embryonic Stem Cells / metabolism*
  • Reproducibility of Results
  • Software
  • Synthetic Biology / methods