The receptor-like kinases (RLKs) CLAVATA1 (CLV1) and BARELY ANY MERISTEMs (BAM1-BAM3) form the CLV1 family (CLV1f), which perceives peptides of the CLV3/EMBRYO SURROUNDING REGION (ESR)-related (CLE) family within various signaling pathways of Arabidopsis thaliana. CLE peptide signaling, which is required for meristem size control, vascular development, and pathogen responses, involves the formation of receptor complexes at the plasma membrane. These complexes comprise RLKs and co-receptors in varying compositions depending on the signaling context, and regulate expression of target genes, such as WUSCHEL (WUS). How the CLE signal is transmitted intracellularly after perception at the plasma membrane is not known in detail. Here, we found that the membrane-associated receptor-like cytoplasmic kinase (RLCK) MAZZA (MAZ) and additional members of the Pti1-like protein family interact in vivo with CLV1f receptors. MAZ, which is widely expressed throughout the plant, localizes to the plasma membrane via post-translational palmitoylation, potentially enabling stimulus-triggered protein re-localization. We identified a role for a CLV1-MAZ signaling module during stomatal and root development, and redundancy could potentially mask other phenotypes of maz mutants. We propose that MAZ, and related RLCKs, mediate CLV1f signaling in a variety of developmental contexts, paving the way towards understanding the intracellular processes after CLE peptide perception.
Keywords: CLAVATA; CLE peptides; Pti1-like family; RLCK; RLK; plant development.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: [email protected].