Distribution of gasses to the cast volume and volume of pores can be maintained within the acceptable limits by means of correct setting of technological parameters of casting and by selection of suitable structure and gating system arrangement. The main idea of this paper solves the issue of suitability of die casting adjustment-i.e., change of technological parameters or change of structural solution of the gating system-with regards to inner soundness of casts produced in die casting process. Parameters which were compared included height of a gate and velocity of a piston. The melt velocity in the gate was used as a correlating factor between the gate height and piston velocity. The evaluated parameter was gas entrapment in the cast at the end of the filling phase of die casting cycle and at the same time percentage of porosity in the samples taken from the main runner. On the basis of the performed experiments it was proved that the change of technological parameters, particularly of pressing velocity of the piston, directly influences distribution of gasses to the cast volume.
Keywords: HPDC; air entrapment; aluminum alloys; gating system; technological factors of die casting.