T-cell recognition of somatic mutation-derived cancer neoepitopes can lead to tumor regression. Due to the difficulty to identify effective neoepitopes, constructing a database for sharing experimentally validated cancer neoantigens will be beneficial to precise cancer immunotherapy. Meanwhile, the routine neoepitope prediction in silico is important but laborious for clinical use. Here we present NEPdb, a database that contains more than 17,000 validated human immunogenic neoantigens and ineffective neoepitopes within human leukocyte antigens (HLAs) via curating published literature with our semi-automatic pipeline. Furthermore, NEPdb also provides pan-cancer level predicted HLA-I neoepitopes derived from 16,745 shared cancer somatic mutations, using state-of-the-art predictors. With a well-designed search engine and visualization modes, this database would enhance the efficiency of neoantigen-based cancer studies and treatments. NEPdb is freely available at http://nep.whu.edu.cn/.
Keywords: HLA; MHC; T-cell; cancer immunotherapy; neoantigen; neoepitope; somatic mutation.
Copyright © 2021 Xia, Bai, Fan, Li, Li, Wang, Yin and Zhou.