Background: Nonselective His-bundle pacing (nsHBp), nonselective left bundle branch pacing (nsLBBp), and left ventricular septal myocardial pacing (LVSP) are recognized as physiological pacing techniques.
Objective: The purpose of this study was to compare differences in ventricular depolarization between these techniques using ultra-high-frequency electrocardiography (UHF-ECG).
Methods: In patients with bradycardia, nsHBp, nsLBBp (confirmed concomitant left bundle branch [LBB] and myocardial capture), and LVSP (pacing in left ventricular [LV] septal position without proven LBB capture) were performed. Timings of ventricular activations in precordial leads were displayed using UHF-ECG, and electrical dyssynchrony (e-DYS) was calculated as the difference between the first and last activation. Duration of local depolarization (Vd) was determined as width of the UHF-QRS complex at 50% of its amplitude.
Results: In 68 patients, data were collected during nsLBBp (35), LVSP (96), and nsHBp (55). nsLBBp resulted in larger e-DYS than did LVSP and nsHBp [- 24 ms (-28;-19) vs -12 ms (-16;-9) vs 10 ms (7;14), respectively; P <.001]. nsLBBp produced similar values of Vd in leads V5-V8 (36-43 ms vs 38-43 ms; P = NS in all leads) but longer Vd in leads V1-V4 (47-59 ms vs 41-44 ms; P <.05) as nsHBp. LVSP caused prolonged Vd in leads V1-V8 compared to nsHBp and longer Vd in leads V5-V8 compared to nsLBBp (44-51 ms vs 36-43 ms; P <.05) regardless of R-wave peak time in lead V5 or QRS morphology in lead V1 present during LVSP.
Conclusion: nslbbp preserves physiological LV depolarization but increases interventricular electrical dyssynchrony. LV lateral wall depolarization during LVSP is prolonged, but interventricular synchrony is preserved.
Keywords: Depolarization duration; Dyssynchrony; His-bundle pacing; Left bundle branch pacing; Left ventricular septal myocardial pacing; Ultra-high-frequency electrocardiography.
Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.