Glioblastoma (GB) is the most common and aggressive form of primary brain tumor, in which the presence of an inflammatory environment, composed mainly by tumor-associated macrophages (TAMs), is related to its progression and development of chemoresistance. Toll-Like Receptors (TLRs) are key components of the innate immune system and their expression in both tumor and immune-associated cells may impact the cell communication in the tumor microenvironment (TME), further modeling cancer growth and response to therapy. Here, we investigated the participation of TLR4-mediated signaling as a mechanism of induced-immune escape in GB. Initially, bioinformatics analysis of public datasets revealed that TLR4 expression is lower in GB tumors when compared to astrocytomas (AST), and in a subset of TAMs. Further, we confirmed that TLR4 expression is downregulated in chemoresistant GB, as well as in macrophages co-cultured with GB cells. Additionally, TLR4 function is impaired in those cells even following stimulation with LPS, an agonist of TLR4. Finally, experiments performed in a cohort of clinical primary and metastatic brain tumors indicated that the immunostaining of TLR4 and CD45 are inversely proportional, and confirmed the low TLR4 expression in GBs. Interestingly, the cytoplasmic/nuclear pattern of TLR4 staining in cancer tissues suggests additional roles of this receptor in carcinogenesis. Overall, our data suggest the downregulation of TLR4 expression and activity as a strategy for GB-associated immune escape. Additional studies are necessary to better understand TLR4 signaling in TME in order to improve the benefits of immunotherapy based on TLR signaling.
Keywords: Chemoresistance; Glioblastoma; Immune evasion; Macrophages; TLR4.
Copyright © 2021 Elsevier B.V. All rights reserved.