In photosynthetic organisms, it is recognized that the intracellular redox ratio of NADPH is regulated within an appropriate range for the cooperative function of a wide variety of physiological processes. However, despite its importance, there is large variability in the values of the NADPH fraction [NADPH/(NADPH + NADP+)] quantitatively estimated to date. In the present study, the light response of the NADPH fraction was investigated by applying a novel NADP(H) extraction method using phenol / chloroform / isoamyl alcohol (PCI) in the cyanobacterium Synechocystis sp. PCC 6803. The light response of NADP(H) observed using PCI extraction was qualitatively consistent with the NAD(P)H fluorescence time course measured in vivo. Moreover, the results obtained by PCI extraction and the fluorescence-based methods were also consistent in a mutant lacking the ability to oxidize NAD(P)H in the respiratory chain, and exhibiting a unique NADPH light response. These observations indicate that the PCI extraction method allowed quantitative determination of NADP(H) redox. Notably, the PCI extraction method showed that not all NADP(H) was oxidized or reduced by light-dark transition. Specifically, the fraction of NADPH was 42% in the dark-adapted cell, and saturated at 68% in light conditions.
Keywords: Cyanobacteria; Intracellular redox state; NADPH; Photosynthesis; Quantitative determination.