Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria (Lactobacillus plantarum)

Food Sci Biotechnol. 2021 Mar 3;30(4):555-564. doi: 10.1007/s10068-021-00883-2. eCollection 2021 Apr.

Abstract

Co-fermentation using yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and the bacteria (Lactobacillus plantarum) as starters isolated from spontaneous sourdough was conducted for the brewing of glucuronic acid (GlcA)-enriched apple cider. The concentration of GlcA in the apple cider co-fermented for 14 d with commercial S. cerevisiae and L. plantarum was 37.7 ± 1.7 mg/mL while a concentration of 62.8 ± 3.1 mg/mL was recorded for fermentation with P. kudriavzevii and L. plantarum, which was higher than the corresponding single yeast fermentation. The co-fermented apple cider revealed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 171.67 ± 0.79 µg trolox equivalents (TE)/mL using P. kudriavzevii and L. plantarum, compared to the control (143.89 ± 7.07 µg TE/mL) just using S. cerevisiae. Thus, the co-fermentation of S. cerevisiae and L. plantarum and P. kudriavzevii and L. plantarum provided a new strategy for the development of GlcA-enriched apple cider with enhanced antioxidant capacity.

Keywords: Antioxidant activity; Apple cider; Co-fermentation; Glucuronic acid; Lactobacillus plantarum.