Purpose: In BRAF V600MUT metastatic melanoma, cyclin D-CDK4/6-INK4-Rb pathway alterations are involved in resistance to MAPK inhibitors, suggesting a clinical benefit of cyclin-dependent kinase 4 (CDK4) inhibitors. In this phase I-II study, we aimed to establish the MTD of palbociclib when added to vemurafenib.
Patients and methods: Patients with BRAF V600E/KMUT metastatic melanoma harboring CDKN2A loss and RB1 expression were included and stratified into two groups according to previous BRAF inhibitor treatment (no:strata 1; yes:strata 2). Treatment comprised palbociclib once daily for 14 days followed by a 7-day break + continuous dosing of vemurafenib. The primary endpoint was the occurrence of dose-limiting toxicity (DLT), and the secondary endpoints included the best response, survival, pharmacokinetics, and tumor molecular profiling.
Results: Eighteen patients were enrolled, with 15 in strata 2. Characteristics at inclusion were American Joint Committee on Cancer stage IVM1c (N = 16; 88.9%), high lactate dehydrogenase (N = 9; 50.0%), and median number of previous treatments of 2. One and 5 patients experienced DLT in strata 1 and 2, respectively, defining the MTD at palbociclib 25 mg and vemurafenib 960 mg in strata 2. No significant evidence for drug-drug interactions was highlighted. The median progression-free survival was 2.8 months, and 5 (27.8%) patients showed a clinical response. The baseline differential mRNA expression analysis and in vitro data revealed the role of CHEK2 in the response to palbociclib.
Conclusions: Although the combination of palbociclib + fixed-dose vemurafenib did not allow an increased palbociclib dosage above 25 mg, a significant clinical benefit was achieved in pretreated patients with melanoma. An association between the transcriptomic data and clinical response was highlighted.
Trial registration: ClinicalTrials.gov NCT02202200.
©2021 American Association for Cancer Research.