Background/aim: Experimental oncology commonly uses cells as oncological models, providing a framework for the testing of drugs, and investigation of cytotoxicity, mutagenesis and carcinogenesis. Investigations into poly-ADP-ribose polymerase 1 (PARP1) inhibition have become ever more relevant due to its approval as a therapeutic option for tumors with BRCA1/2 DNA repair-associated mutation and the seemingly high PARP expression levels in some tumor subtypes. In this study, we aimed to determine PARP1 gene expression of different hematological cancer-derived cell lineages and compare them to that of normal cell lines.
Materials and methods: PARP1 gene expression in seven different neoplastic lineages, representing three different hematological disorders (chronic myeloid leukemia, Burkitt lymphoma and acute lymphoblastic leukemia), was quantified by quantitative real-time polymerase chain reaction.
Results: All hematological malignant lineages in this study overexpressed PARP1 when compared to the normal cell line MRC-5, with Burkitt's lymphoma cells having the highest expression values (fold change: 93).
Conclusion: Overexpression of PARP1 in hematological malignant lineages is a finding of crucial importance to future studies exploring possible cellular oncogenic pathways and supports investigations into the effectiveness of PARP1 inhibitors against hematological disorders.
Keywords: Cultured cells; PARP polymerase; hematological malignancies.
Copyright © 2021 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.