Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity. Statistical analyses revealed three vestibular morphotypes, best explained by three locomotor categories-quadrupeds, bipeds and simple fliers (including bipedal nonavialan dinosaurs), and high-maneuverability fliers. Troodontids fall with Archaeopteryx among the extant low-maneuverability fliers. Analyses of cochlear shape revealed a single instance of elongation, on the stem of Archosauria. We suggest that this transformation coincided with the origin of both high-pitched juvenile location, alarm, and hatching-synchronization calls and adult responses to them.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.