Metal-chelating polymer-based radioimmunoconjugates (RICs) are effective agents for radioimmunotherapy but are currently limited by nonspecific binding and off-target organ uptake. Nonspecific binding appears after conjugation of the polymer to the antibody and may be related to random lysine conjugation since the polymers themselves do not bind to cells. To investigate the role of conjugation sites on nonspecific binding of polymer RICs, we developed a microbial transglutaminase reaction to prepare site-specific antibody-polymer conjugates. The reaction was enabled by introducing a Q-tag (i.e., 7M48) into antibody (i.e., Fab) fragments and synthesizing a polyglutamide-based metal-chelating polymer with a PEG amine block to yield substrates. Mass spectrometric analyses confirmed that the microbial transglutaminase conjugation reaction was site-specific. For comparison, random lysine conjugation analogs with an average of one polymer per Fab were prepared by bis-aryl hydrazone conjugation. Conjugates were prepared from an anti-frizzled-2 Fab to target the Wnt pathway, along with a nonbinding specificity control, anti-Luciferase Fab. Fabs were engineered from a trastuzumab-based IgG1 framework and lack lysines in the antigen-binding site. Conjugates were analyzed for thermal conformational stability by differential scanning fluorimetry, which showed that the site-specific conjugate had a similar melting temperature to the parent Fab. Binding assays by biolayer interferometry showed that the site-specific anti-frizzled-2 conjugate maintained high affinity to the antigen, while the random conjugate showed a 10-fold decrease in affinity, which was largely due to changes in association rates. Radioligand cell-binding assays on frizzled-2+ PANC-1 cells and frizzled-2- CHO cells showed that the site-specific anti-frizzled-2 conjugate had ca. 4-fold lower nonspecific binding compared to the random conjugate. Site-specific conjugation appeared to reduce nonspecific binding associated with random conjugation of the polymer in polymer RICs.