Background: Venous ethanol ablation (VEA) is effective for treatment of left ventricular (LV) summit (LVS) arrhythmias. The LVS venous anatomy is poorly understood and has inconsistent nomenclature.
Objective: The purpose of this study was to delineate the LVS venous anatomy by selective venography and 3-dimensional (3D) mapping during VEA and by venous-phase coronary computed tomographic angiography (vCTA).
Methods: We analyzed (1) LVS venograms and 3D maps of 53 patients undergoing VEA; and (2) 3D reconstructions of 52 vCTAs, tracing LVS veins.
Results: Angiography identified the following LVS veins: (1) LV annular branch of the great cardiac vein (GCV) (19/53); (2) septal (rightward) branches of the anterior ventricular vein (AIV) (53/53); and (3) diagonal branches of the AIV (51/53). Collateral connections between LVS veins and outflow, conus, and retroaortic veins were common. VEA was delivered to target arrhythmias in 38 of 53 septal, 6 of 53 annular, and 2 of 53 diagonal veins. vCTA identified LVS veins (range 1-5) in a similar distribution. GCV-AIV transition could either form an angle close to the left main artery bifurcation (n = 16; 88° ± 13°) or cut diagonally (n = 36; 133°±12°) (P ≤.001). Twenty-one patients had LV annular vein. In 28 patients only septal LVS veins were visualized in vCTA, in 2 patients only diagonal veins and in 22 patients both septal and diagonal veins were seen. In 39 patients the LVS veins reached the outflow tracts and their vicinity.
Conclusion: We provide a systematic atlas and nomenclature of LVS veins related to arrhythmogenic substrates. vCTA can be useful for noninvasive evaluation of LVS veins before ethanol ablation.
Keywords: Ablation; Computed tomography; Coronary venous system; Ethanol; Left ventricular summit; Ventricular arrhythmia.
Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.