Short interval intracortical inhibition (SICI) is a biomarker for altered motor inhibition in schizophrenia, but the manner in which distant sites influence the inhibitory cortical-effector response remains elusive. Our study investigated local and long-distance resting state functional connectivity (rsFC) markers of SICI in a sample of N = 23 patients with schizophrenia and N = 29 controls. Local functional connectivity was quantified using regional homogeneity (ReHo) analysis and long-range connectivity was estimated using seed-based rsFC analysis. Direct and indirect effects of connectivity measures on SICI were modeled using mediation analysis. Higher SICI ratios (indicating reduced inhibition) in patients were associated with lower ReHo in the right insula. Follow-up rsFC analyses showed that higher SICI scores (indicating reduced inhibition) were associated with reduced connectivity between right insula and hubs of the corticospinal pathway: sensorimotor cortex and basal ganglia. Mediation analysis supported a model in which the direct effect of local insular connectivity strength on SICI is mediated by the interhemispheric connectivity between insula and left sensorimotor cortex. The broader clinical implications of these findings are discussed with emphasis on how these preliminary findings might inform novel interventions designed to restore or improve SICI in schizophrenia and deepen our understanding of motor inhibitory control and impact of abnormal signaling in motor-inhibitory pathways in schizophrenia.
Keywords: Regional homogeneity (ReHo); Resting fMRI; Schizophrenia; Short-interval intracortical inhibition (SICI); Transcranial magnetic stimulation (TMS).
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.