Effects of biofeedback on whole lower limb joint kinematics and external kinetics

J Sports Sci. 2021 Oct;39(19):2172-2179. doi: 10.1080/02640414.2021.1923930. Epub 2021 May 18.

Abstract

Biofeedback (BFb) is a useful tool to accelerate the skill development process. Limited research has applied BFb to the whole lower-limb in a complex skill therefore the aim of this research was to assess the effectiveness of a biofeedback intervention targeting whole lower limb kinematics. Thirty-two healthy participants were randomized to a BFb (n = 16) and a Control group (n = 16). Participants visited a motion capture laboratory on three occasions during one week, and returned for retention testing at 4-6 weeks. Following introduction to a novel lunge-touch task, visual BFb on lower limb joint kinematic extension angular velocities (ω) and timing were provided following each lunge. BFb was effective in increasing Hipω (F = 3.746, p = 0.03) and Kneeω (F = 10.241, p = 0.01). Peak Ankleω remained unchanged (F = 1.537, p = 0.23, η2 = 0.05), however Peak Ankleθ (F = 10.915, p < 0.001, η2 = 0.27) and AnkleROM (F = 9.543, p < 0.001, η2 = 0.24) significantly increased. Despite kinematic changes, there were no significant changes in any external kinetics. No significant correlations were found between Hipω, Kneeω or Ankleω and horizontal impulse (ImpulseY: r = 0.20, p = 0.26; r = -0.11, p = 0.24; and r = 0.22, p = 0.28, respectively). Findings demonstrate that BFb can be used to alter multiple kinematic variables in a complex skill, but do not necessarily alter associated kinetic variables not directly targeted by BFb.

Keywords: Biomechanics; motor control; skill development.

MeSH terms

  • Adult
  • Biofeedback, Psychology / methods*
  • Biomechanical Phenomena
  • Female
  • Healthy Volunteers
  • Humans
  • Kinetics
  • Lower Extremity / physiology*
  • Male
  • Movement / physiology*
  • Task Performance and Analysis
  • Young Adult