Time-dependent density functional theory applied to average atom opacity

Phys Rev E. 2021 Apr;103(4-1):043206. doi: 10.1103/PhysRevE.103.043206.

Abstract

We focus on studying the opacity of iron, chromium, and nickel plasmas at conditions relevant to experiments carried out at Sandia National Laboratories [J. E. Bailey et al., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. We calculate the photoabsorption cross sections and subsequent opacity for plasmas using linear-response time-dependent density functional theory (TD-DFT). Our results indicate that the physics of channel mixing accounted for in linear-response TD-DFT leads to an increase in the opacity in the bound-free quasicontinuum, where the Sandia experiments indicate that models underpredict iron opacity. However, the increase seen in our calculations is only in the range of 5%-10%. Further, we do not see any change in this trend for chromium and nickel. This behavior indicates that channel mixing effects do not explain the trends in opacity observed in the Sandia experiments.