Iterative stripe artifact correction framework for TOF-MRA

Comput Biol Med. 2021 Jul:134:104456. doi: 10.1016/j.compbiomed.2021.104456. Epub 2021 May 11.

Abstract

The purpose of this study is to develop a practical stripe artifacts correction framework on three-dimensional (3-D) time-of-flight magnetic resonance angiography (TOF-MRA) obtained by multiple overlapping thin slab acquisitions (MOTSA) technology. In this work, the stripe artifacts in TOF-MRA were considered as a part of image texture. To separate the image structure and the texture, the relative total variation (RTV) was firstly employed to smooth the TOF-MRA for generating the template image with fewer image textures. Then a residual image was generated, which was the difference between the template image and the raw TOF-MRA. The residual image was served as the image texture, which contained the image details and stripe artifacts. Then, we obtained the artifact image from the residual image via a filter in a specific direction since the image artifacts appeared as stripes. The image details were then produced from the difference between the artifact image and the image texture. To produce the corrected images, we finally compensated the image details to the RTV smoothing image. The proposed method was continued until the stripe artifacts during the iteration vary as little as possible. The digital phantom and the real patients' TOF-MRA were used to test the approach. The spatial uniformity was increased from 74% to 82% and the structural similarity was improved from 86% to 98% in the digital phantom test by using the proposed algorithm. Our approach proved to be highly successful in eliminating stripe artifacts in real patient data tests while retaining image details. The proposed iterative framework on TOF-MRA stripe artifact correction is effective and appealing for enhancing the imaging performance of multi-slab 3-D acquisitions.

Keywords: Artifact correction; Magnetic resonance angiography; Relative total variation; Stripe artifact.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Artifacts*
  • Humans
  • Magnetic Resonance Angiography*
  • Phantoms, Imaging