The combination of radiotherapy (RT) with targeted agents in non-small cell lung cancer (NSCLC) has been expected to improve the therapeutic ratio and tumor control. The EGFR blockade enhances the antitumor effect of RT. The ALK inhibition elicits anti-proliferative, pro-apoptotic and antiangiogenic effects in ALK-positive NSCLC cell lines, enhanced by the exposure to RT. The antiangiogenic agents normalize pathological tumor vessels, thus decrease tumor cell hypoxia and improve radiosensitivity. To date, however, none of the targeted agents combined with RT has shown proven clinical benefit over standard chemoradiation (CRT) in locally advanced NSCLC. The risk of potential excessive toxicity related to the therapeutic combination of RT and targeted agents cannot be ignored. Well-designed clinical trials may allow development of more effective combination strategies. Another potential application of combined RT and targeted therapies in oncogene-driven NSCLC is metastatic oligoprogressive or oligopersistent disease. The use of RT in oligoprogressive oncogene-driven NSCLC, while continuing first line targeted therapy, can potentially eradicate resistant cell clones and provide survival benefit. Likewise, the consolidation of oligopersistent foci (molecularly resistant to first line targeted therapy) may potentially interfere with the natural course of the disease by avoiding or delaying progression. We discuss here the molecular and radiobiological mechanisms of combining RT and targeted agents, and summarize current clinical experience.
Keywords: Non-small cell lung cancer (NSCLC); monoclonal antibodies; radiotherapy; targeted therapy, tyrosine kinase inhibitors (TKI).
2021 Translational Lung Cancer Research. All rights reserved.