Introduction: A technique to localize a radiological target on the head convexity fast and with acceptable precision is sufficient for surgeries of superficial intracranial lesions, and of help in the setting of emergency surgery, computer navigation breakdown, limited resources and education. We present a caliper technique based on fundamental geometry, with inexpensive and globally available tools (conventional CT or MRI image viewer, calculator, caliper).
Methods: The distances of the radiological target from two landmarks (nasion and porus acusticus externus) are assessed with an image viewer and Pythagoras' theorem. The two distances are then marked around the landmarks onto the head of the patient with help of a caliper. The intersection defines the target. We tested the technique in a saw bone skull model and afterwards in the operating room. Convexity targets were localized with the caliper navigation technique and then with computer navigation as ground truth.
Results: In the saw bone model, the mean offset between the caliper navigated target and the real target was 2.9 ± 2.8 mm, 95% CI (1.6 mm; 4.2 mm). The mean offset between computer navigated target and real target was 1.6 ± 0.9 mm, 95% CI (1.2 mm; 2 mm) (ns). In 15 patients undergoing navigated cranial procedures, 100 targets were assessed in reference to computer navigation. The mean offset of the caliper navigation was 11 ± 5.2 mm, 95% CI (9.9 mm; 12 mm).
Conclusion: This is a low-tech approach for translation of a radiological target to the patient's head in short time and with globally available inexpensive tools, with satisfying precision for many procedures.