The emphasis of this study lies in how strain SYF15 regulates molecular weight (MW) fractions of soluble microbial products (SMPs) in response to low carbon to nitrogen (C/N) ratio, with high denitrification performance (over 99%). Results indicated SMPs with MW >100 and <50 kDa undoubtedly participated in denitrification before 12.0 h in C/N = 2.0, while sodium acetate was preferred in C/N = 5.0, indicating strain YSF15 was induced to degrade SMPs as a carbon source in low C/N. Additionally, lower C/N activated the extracellular metabolism, with increased fluorescence regional integration (FRI) volume amplitude by 48.08 and 53.43% (versus C/N = 5.0) in MW = 50-10 and 10-3 kDa, respectively. The FRI volume of proteins yielded greater with more degradable components than higher C/N in MW = 100-3 kDa, whereas polysaccharide and protein concentrations differed little with considerable biodegradability, implying components inside protein changed dramatically. This pioneering work contributed to the understanding of denitrification with carbon source deficiency.
Keywords: Denitrification; Low C/N ratio; Molecular weight; Soluble microbial products; Strain YSF15.
Copyright © 2021 Elsevier Ltd. All rights reserved.