CR3 ruffles FcγR's claim over phagocytic cups

J Biol Chem. 2021 Jan-Jun:296:100801. doi: 10.1016/j.jbc.2021.100801. Epub 2021 May 19.

Abstract

Phagocytosis plays diverse roles in biology, but our understanding of the purpose, interplay, and cell signaling mechanisms associated with different modes of phagocytosis is limited, without being able to capture and visualize each step in this rapid process from the beginning to end. A new study by Walbaum et al. uses stunning time-lapse 3D imaging of the engulfment of erythrocytes by macrophages via sinking, ruffling, and cup formation, unequivocally confirming a visionary 44-year-old theory derived from still electron microscopy photos that phagocytosis mediated by complement receptor CR3 occurs via a sinking mechanism and antibody-mediated phagocytosis occurs via phagocytic cup formation. The article also challenges the dogma, showing that phagocytic cup formation is not unique to antibody receptor phagocytosis, rather CR3 plays a complex role in different modes of phagocytosis. For example, inhibition of antibody-mediated phagocytosis leads to a compensatory upregulation of CR3-mediated sinking phagocytosis. These findings animate, in vivid colors, processes previously only captured as stills, exposing interactions between different phagocytic mechanisms and altering our basic understanding of this important process.

Keywords: DAP12; FcγRs; IgG; IgM; Syk; complement receptor 3; filopodia; macrophage; phagocytosis; time-lapse 3D spinning disk confocal microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Complement System Proteins / physiology
  • Phagocytes / metabolism*
  • Phagocytosis / physiology
  • Receptors, Complement / metabolism*
  • Receptors, IgG / metabolism*

Substances

  • Receptors, Complement
  • Receptors, IgG
  • Complement System Proteins