The aggregation process of α-synuclein (α-syn) is substantial in the pathogenesis of Parkinson's disease. Indolinone derivatives are inhibitors of α-syn aggregates and can be used as PET-based radiotracers for imaging α-syn fibrils. However, no investigations on the metabolism of indolinone derivatives have been reported until now. In the present research, a 13C and 15N isotope labeling strategy was developed to synthesize compound [13C2,15N]-(Z)-1-(4-aminobenzyl)-3-((E)-(3-phenyl)allylidene)indolin-2-one (M0'), which was then used in a study of metabolism in hepatocytes. The metabolites were characterized using accurate mass and characteristic ion measurements. In the metabolic system, compound M0' was the main component (accounting for 97.5% of compound-related components) after incubation in hepatocytes for 3 h, which indicated that compound M0' possessed great metabolic stability. Seven metabolites have been successfully verified by UPLC/Q TOF MS in metabolic studies, including hydroxyl M0' (M1'), hydroxyl and methylated M0' (M2'), N-acetylated M0' (M3'), sulfate of hydroxyl M0' (M4'), the glucose conjugate of M0' (M5'), glucuronide conjugate of M0' (M6'), and glucuronide conjugate of hydroxyl M0' (M7'). The study on metabolism provides the important information to develop effective α-syn aggregate inhibitors and new PET-tracer-related indolinone derivatives.
Keywords: 15N]-isotope labeling; UPLC/Q TOF MS; [13C2; indolinone derivatives; metabolite; α-synuclein.