Human Health Exposure Analysis Resource (HHEAR): A model for incorporating the exposome into health studies

Int J Hyg Environ Health. 2021 Jun:235:113768. doi: 10.1016/j.ijheh.2021.113768. Epub 2021 May 23.

Abstract

Background: Characterizing the complexity of environmental exposures in relation to human health is critical to advancing our understanding of health and disease throughout the life span. Extant cohort studies open the door for such investigations more rapidly and inexpensively than launching new cohort studies and the Human Health Exposure Analysis Resource (HHEAR) provides a resource for implementing life-stage exposure studies within existing study populations. Primary challenges to incorporation of environmental exposure assessment in health studies include: (1) lack of widespread knowledge of biospecimen and environmental sampling and storage requirements for environmental exposure assessment among investigators; (2) lack of availability of and access to laboratories capable of analyzing multiple environmental exposures throughout the life-course; and (3) studies lacking sufficient power to assess associations across life-stages. HHEAR includes a consortium of researchers with expertise in laboratory analyses, statistics and logistics to overcome these limitations and enable inclusion of exposomics in human health studies.

Objective: This manuscript describes the structure and strengths of implementing the harmonized HHEAR resource model, and our approaches to addressing challenges. We describe how HHEAR incorporates analyses of biospecimens and environmental samples and human health studies across the life span - serving as a model for incorporating environmental exposures into national and international research. We also present program successes to date.

Discussion: HHEAR provides a full-service laboratory and data analysis exposure assessment resource, linking scientific, life span, and toxicological consultation with both laboratory and data analysis expertise. HHEAR services are provided without cost but require NIH, NCI, NHLBI, or ECHO funding of the original cohort; internal HHEAR scientific review and approval of a brief application; and adherence to data sharing and publication policies. We describe the benefits of HHEAR's structure, collaborative framework and coordination across project investigators, analytical laboratories, biostatisticians and bioinformatics specialists; quality assurance/quality control (QA/QC) including integrated sample management; and tools that have been developed to support the research (exposure information pages, ontology, new analytical methods, common QA/QC approach across laboratories, etc.). This foundation supports HHEAR's inclusion of new laboratory and statistical analysis methods and studies that are enhanced by including targeted analysis of specific exposures and untargeted analysis of chemicals associated with phenotypic endpoints in biological and environmental samples.

Conclusion: HHEAR is an interdisciplinary team of toxicologists, epidemiologists, laboratory scientists, and data scientists across multiple institutions to address broad and complex questions that benefit from integrated laboratory and data analyses. HHEAR's processes, features, and tools include all life stages and analysis of biospecimens and environmental samples. They are available to the wider scientific community to augment studies by adding state of the art environmental analyses to be linked to human health outcomes.

Keywords: Data harmonization; Environmental health; Exposure assessment; HHEAR; Human biomonitoring.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Environmental Exposure / analysis
  • Environmental Health
  • Exposome*
  • Health Resources
  • Humans
  • Research Design