Background and aims: The National Multiple Sclerosis Society and other expert organizations recommended that all patients with multiple sclerosis (MS) should be vaccinated against COVID-19. However, the effect of disease-modifying therapies (DMTs) on the efficacy to mount an appropriate immune response is unknown. We aimed to characterize humoral immunity in mRNA-COVID-19 MS vaccinees treated with high-efficacy DMTs.
Methods: We measured SARS-CoV-2 IgG response using anti-spike protein-based serology (EUROIMMUN) in 125 MS patients vaccinated with BNT162b2-COVID-19 vaccine 1 month after the second dose. Patients were either untreated or under treatment with fingolimod, cladribine, or ocrelizumab. A group of healthy subjects similarly vaccinated served as control. The percent of subjects that developed protective antibodies, the titer, and the time from the last dosing were evaluated.
Results: Protective humoral immunity of 97.9%, 100%, 100%, 22.7%, and 3.8%, was observed in COVID-19 vaccinated healthy subjects (N = 47), untreated MS patients (N = 32), and MS patients treated with cladribine (N = 23), ocrelizumab (N = 44), and fingolimod (N = 26), respectively. SARS-CoV-2 IgG antibody titer was high in healthy subjects, untreated MS patients, and MS patients under cladribine treatment, within 29.5-55 days after the second vaccine dose. Only 22.7% of patients treated with ocrelizumab developed humoral IgG response irrespective to normal absolute lymphocyte count. Most fingolimod-treated MS patients had very low lymphocyte count and failed to develop SARS-COV-2 antibodies. Age, disease duration, and time from the last dosing did not affect humoral response to COVID-19 vaccination.
Conclusions: Cladribine treatment does not impair humoral response to COVID-19 vaccination. We recommend postponing ocrelizumab treatment in MS patients willing to be vaccinated as a protective humoral response can be expected only in some. We do not recommend vaccinating MS patients treated with fingolimod as a protective humoral response is not expected.
Keywords: COVID-19; SARS-COV-2 IgG; humoral immune response; mRNA vaccine; multiple sclerosis.
© The Author(s), 2021.