Patients with neuroblastoma in molecular remission remain at considerable risk for disease recurrence. Studies have found that neuroblastoma tissue contains adrenergic (ADRN) and mesenchymal (MES) cells; the latter express low levels of commonly used markers for minimal residual disease (MRD). We identified MES-specific MRD markers and studied the dynamics of these markers during treatment.
Patients and methods: Microarray data were used to identify genes differentially expressed between ADRN and MES cell lines. Candidate genes were then studied using real-time quantitative polymerase chain reaction in cell lines and control bone marrow and peripheral blood samples. After selecting a panel of markers, serial bone marrow, peripheral blood, and peripheral blood stem cell samples were obtained from patients with high-risk neuroblastoma and tested for marker expression; survival analyses were also performed.
Results: PRRX1, POSTN, and FMO3 mRNAs were used as a panel for specifically detecting MES mRNA in patient samples. MES mRNA was detected only rarely in peripheral blood; moreover, the presence of MES mRNA in peripheral blood stem cell samples was associated with low event-free survival and overall survival. Of note, during treatment, serial bone marrow samples obtained from 29 patients revealed a difference in dynamics between MES mRNA markers and ADRN mRNA markers. Furthermore, MES mRNA was detected in a higher percentage of patients with recurrent disease than in those who remained disease free (53% v 32%, respectively; P = .03).
Conclusion: We propose that the markers POSTN and PRRX1, in combination with FMO3, be used for real-time quantitative polymerase chain reaction-based detection of MES neuroblastoma mRNA in patient samples because these markers have a unique pattern during treatment and are more prevalent in patients with poor outcome. Together with existing markers of MRD, these new markers should be investigated further in large prospective studies.
© 2019 by American Society of Clinical Oncology.