In recent years, the emergence of targeted covalent inhibitors which bind to the G12C mutant of KRAS have offered a solution to this previously intractable target. Inhibitors of KRASG12C tend to be structurally complex, displaying features such as atropisomerism, chiral centres and a reactive covalent warhead. Such molecules result in lengthy and challenging syntheses, and as a consequence critical decisions need to be made at the design level to maximise the chances of success. Here we take a retrospective look into how computational chemistry can help guide and prioritise medicinal chemistry efforts in the context of a series of conformationally restricted tetracyclic quinolines.
This journal is © The Royal Society of Chemistry.