Mu oscillations (8-13 Hz), recorded over the human motor cortex, have been shown to consistently suppress during both the imagination and performance of movements; however, its functional significance in the imagery process is currently unclear. Here we examined human electroencephalographic (EEG) oscillations in the context of motor imagery performance as measured by imagery success within participants and imagery ability between participants. We recorded continuous EEG activity while participants performed the Test of Ability in Movement Imagery (TAMI), an objective test of motor imagery task. Results demonstrated that mu oscillatory activity significantly decreased during successful as compared to unsuccessful imagery trials. However, the extent of reduction in mu oscillations did not correlate with overall imagery ability as measured by the total TAMI score. These findings provide further support for the involvement of mu oscillations in indexing motor imagery performance and suggest that mu oscillations may reflect important processes related to imagery accuracy, processes likely related to those underlying overt motor production and motor understanding.
Keywords: Electroencephalography(EEG); Imagery ability; Imagery success; Motor imagery; mu rhythm.
Copyright © 2021 Elsevier B.V. All rights reserved.