SVS-1 is a cationic amphiphilic peptide (CAP) that exhibits a preferential cytotoxicity towards cancer cells over normal cells. In this study, we developed radiogallium-labeled SVS-1 (67Ga-NOTA-KV6), as well as two SVS-1 derivatives, with the repeating KV residues replaced by RV or HV (67Ga-NOTA-RV6 and 67Ga-NOTA-HV6). All three peptides showed high accumulation in epidermoid carcinoma KB cells (53-143% uptake/mg protein). Though 67Ga-NOTA-RV6 showed the highest uptake among the three CAPs, its uptake in 3T3-L1 fibroblasts was just as high, indicating a low selectivity. In contrast, the uptake of 67Ga-NOTA-KV6 and 67Ga-NOTA-HV6 into 3T3-L1 cells was significantly lower than that in KB cells. An endocytosis inhibition study suggested that the three 67Ga-NOTA-CAPs follow distinct pathways for internalization. In the biodistribution study, the tumor uptakes were found to be 4.46%, 4.76%, and 3.18% injected dose/g of tissue (% ID/g) for 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6, respectively, 30 min after administration. Though the radioactivity of these peptides in tumor tissue decreased gradually, 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6 reached high tumor/blood ratios (7.7, 8.0, and 3.8, respectively) and tumor/muscle ratios (5.0, 3.3, and 4.0, respectively) 120 min after administration. 67Ga-NOTA-HV6 showed a lower tumor uptake than the two other tracers, but it exhibited very low levels of uptake into peripheral organs. Overall, the replacement of lysine in SVS-1 with other basic amino acids significantly influenced its binding and internalization into cancer cells, as well as its in vivo pharmacokinetic profile. The high accessibility of these peptides to tumors and their ability to target the surface membranes of cancer cells make radiolabeled CAPs excellent candidates for use in tumor theranostics.
Keywords: cancer; cationic amphiphilic peptide; molecular imaging; radiogallium.