Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles

Polymers (Basel). 2021 May 25;13(11):1728. doi: 10.3390/polym13111728.

Abstract

Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N'-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72-78% to 79-83% to 84-87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.

Keywords: bis-thiazoles; cross-linked chitosan; hydrazonoyl halides; multiwalled carbon nanotubes/cross-linked chitosan composite; thiosemicarazones.