Mercury (Hg) is a highly toxic element that causes bone defects and malformations. Structure and surface analyses using quantitative x-ray diffraction using the Rietveld method, High-Resolution Transmission Electron Microscopy and nanodiffraction analyses, and Fourier-Transformed Infrared spectroscopy showed that bone enriched naturally with Hg (≤ 2.3 %) contained Hg3PO4 [(Hg2)3(PO4)2] and HgO. Bone [mostly as apatite, verified as carboxyapatite Ca10(PO4)4(CO3)3(OH)2(s)] and cinnabar (HgS) dissolved releasing Hg+ (existing as dimer Hg22+) and PO43-, both of which became immobilized as (Hg2)3(PO4)2. Besides, released Hg2+ became oxidized to form HgO. The outcome of this work is novel, provided that only a handful of stable compounds of Hg22+ are found in nature.
Keywords: Hg transformation in bone; Hg(+) (Hg(2)(2+)) natural immobilization.
Copyright © 2021 Elsevier GmbH. All rights reserved.