Introduction: Brain metastasis (BM) is one of the most common metastases from primary lung cancer (PLC). Recently, the National Lung Screening Trial revealed the efficacy of low-dose computed tomography (LDCT) screening on LC mortality reduction. Nevertheless, it remains unknown if early detection of PLC through LDCT may be potentially beneficial in reducing the risk of subsequent metastases. Our study aimed to investigate the impact of LDCT screening for PLC on the risk of developing BM after PLC diagnosis.
Methods: We used the National Lung Screening Trial data to identify 1502 participants who were diagnosed with PLC in 2002 to 2009 and have follow-up data for BM. Cause-specific competing risk regression was applied to evaluate an association between BM risk and the mode of PLC detection-that is, LDCT screen-detected versus non-LDCT screen-detected. Subgroup analyses were conducted in patients with early stage PLC and those who underwent surgery for PLC.
Results: Of 1502 participants, 41.4% had PLC detected through LDCT screening versus 58.6% detected through other methods, for example, chest radiograph or incidental detection. Patients whose PLC was detected with LDCT screening had a significantly lower 3-year incidence of BM (6.5%) versus those without (11.9%), with a cause-specific hazard ratio (HR) of 0.53 (p = 0.001), adjusting for age at PLC diagnosis, PLC stage, PLC histology, and smoking status. This significant reduction in BM risk among PLCs detected through LDCT screening persisted in subgroups of participants with early stage PLC (HR = 0.47, p = 0.002) and those who underwent surgery (HR = 0.37, p = 0.001).
Conclusions: Early detection of PLC using LDCT screening is associated with lower risk of BM after PLC diagnosis on the basis of a large population-based study.
Keywords: Brain metastasis; Low dose computed tomography screening; Lung cancer; National lung cancer screening trial (NLST).
Copyright © 2021 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.