Mononuclear phagocytes comprise an array of tissue-resident and monocyte-derived cells with important roles in tissue homeostasis and resistance to infection. Their diverse phenotypes make functional characterization within tissues challenging, because multiple surface markers are typically required for subset identification and isolation by cell sorting methods. Analysis of SLAMF9 expression within renal mononuclear phagocyte populations by multi-parametric flow cytometry indicates that SLAMF9 is a specific marker for identification of kidney-resident CD45+ CD11c+ MHC-II+ cells corresponding to prominent tissue-resident MPC populations derived from dendritic cell progenitors in adult mice. High SLAMF9 expression was sufficient to identify and sort these cells from disaggregated tissue using a user-operated cell sorter. The population can be further subdivided according to expression of CD11b and CD14 to identify IRF8high cDC1 cells and cleanly separate the CD11bhigh F4/80low and CD11bint F4/80high CD11c+ MPC subsets. Therefore, SLAMF9 expression allows for the identification and sorting of kidney-resident CD11b+ CD11c+ CD64+ F4/80+ CX3 CR1+ MHC-II+ MPCs without the need for complex antibody panels or reporter mice, simplifying isolation of these cells for study ex vivo.
Keywords: SLAMF9; dendritic cells; kidney; mononuclear phagocytes.
© 2021 International Society for Advancement of Cytometry.