Clinical studies have suggested a close correlation between cis-diamminedichloroplatinum(II) (cisplatin) and radiation resistance. To determine whether this cross-resistance is due to an inherent cellular resistance to both agents, ten early passage human tumor cell lines were examined for their radiation and cisplatin sensitivity in vitro. Previous studies have suggested that these early passage tumor cell lines retain many of their in vivo characteristics and are therefore good models for tumor cells in vivo. Radioresistance was strongly associated with cisplatin resistance in these cell lines. Four of the cell lines examined were radioresistant, having Dos greater than 2.0 Gy. These four lines were also resistant to cisplatin, with the dose reducing survival to 10% greater than 1.29 microM. The remaining six cell lines had Dos ranging from 1.07 to 1.57 Gy of X-ray and doses reducing survival to 10% of less than 0.83 microM cisplatin. Because early passage human tumor cell lines were used, resistance or sensitivity to radiation and cisplatin most likely developed in vivo and was not due to selection in vitro. These results indicate that cross-resistance between cisplatin and radiation in vivo is probably due primarily to an inherent cellular resistance to these agents and not necessarily to the tumor microenvironment in situ.