An urban climate-based empirical model to predict present and future patterns of the Urban Thermal Signal

Sci Total Environ. 2021 Oct 10:790:147710. doi: 10.1016/j.scitotenv.2021.147710. Epub 2021 May 17.

Abstract

Air temperature is a key aspect of urban environmental health, especially considering population and climate change prospects. While the urban heat island (UHI) effect may aggravate thermal exposure, city-level UHI regression studies are generally restricted to temporal-aggregated intensities (e.g., seasonal), as a function of time-fixed factors (e.g., urban density). Hence, such approaches do not disclose daily urban-rural air temperature changes, such as during heatwaves (HW). Here, summer data from Lisbon's air temperature urban network (June to September 2005-2014), is used to develop a linear mixed-effects model (LMM) to predict the daily median and maximum Urban Thermal Signal (UTS) intensities, as a response to the interactions between the time-varying background weather variables (i.e., the regional/non-urban air temperature, 2-hours air temperature change, and wind speed), and time-fixed urban and geographic factors (local climate zones and directional topographic exposure). Results show that, in Lisbon, greatest temperatures and UTS intensities are found in 'Compact' areas of the city are proportional to the background air temperature change. In leeward locations, the UTS can be enhanced by the topographic shelter effect, depending on wind speed - i.e., as wind speed augments, the UTS intensity increases in leeward sites, even where sparsely built. The UTS response to a future urban densification scenario, considering climate change HW conditions (RCP8.5, 2081-2100 period), was also assessed, its results showing an UTS increase of circa 1.0 °C, in critical areas of the city, despite their upwind location. This LMM empirical approach provides a straightforward tool for local authorities to: (i) identify the short-term critical areas of the city, to prioritise public health measures, especially during HW events; and (ii) test the urban thermal performance, in response to climate change and urban planning scenarios. While the model coefficient estimates are case-specific, the approach can be efficiently replicated in other locations with similar biogeographic conditions.

Keywords: Heatwaves; Linear-mixed models; Local climate zones; Urban Heat Island; Urban climate change adaptation; Urban health.

MeSH terms

  • Cities
  • Climate Change
  • Hot Temperature*
  • Humans
  • Temperature
  • Weather*