Respiratory interneurones in the thoracic spinal cord of the cat

J Physiol. 1988 Jan:395:161-92. doi: 10.1113/jphysiol.1988.sp016913.

Abstract

1. The discharges of spontaneously firing neurones, whose activity was modulated in phase with the central respiratory cycle, were recorded in the thoracic ventral horn (T3-T9) of anaesthetized, paralysed cats. 2. Out of 310 neurones, forty-six were positively identified as motoneurones by antidromic activation or spike-triggered averaging, fifty-four were positively identified as interneurones by antidromic activation from other spinal cord segments and ninety were indirectly identified as interneurones by virtue of their positions or firing rates as compared to the motoneurones. 3. Units were classified as inspiratory (64%), expiratory (25%) or post-inspiratory (7%) according to the times of their maximum firing rates. The remaining 4% consisted of units whose discharges were either strongly locked to the respiratory pump cycle or did not fit into the other categories. All but one of the motoneurones were classified as inspiratory or expiratory. 4. Inspiratory and expiratory units were further classified as early, late or tonic according to the starting times of their discharges in the respiratory cycle. The interneurones (both positively and indirectly identified) included more of the early and tonic categories and more fast-firing units than did the motoneurones in both the inspiratory and expiratory groups. 5. The locations of the motoneurones corresponded to the known positions of the intercostal and interchondral motor nuclei, including clear segregation of inspiratory and expiratory populations. The locations of neither the interneurones nor the unidentified units were segregated according to their firing patterns. These neurones were concentrated in the medial half of the ventral horn and were found generally more dorsally than the positions of the motoneurones, though their positions overlapped considerably with this group. 6. The axons of the positively identified interneurones were identified from one to five segments caudally and mostly contralaterally, but were not traced to their terminations. Some axons were located by microstimulation and found to run in the ventral or ventromedial white matter. Conduction velocities covered a wide range, 8 to around 100 m/s, mean 53 m/s. 7. Preliminary calculations indicate that there may be almost 10 times more respiratory thoracic interneurones as respiratory bulbospinal neurones.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Axons / physiology
  • Cats
  • Female
  • Intercostal Nerves / physiology
  • Interneurons / physiology*
  • Male
  • Motor Neurons / physiology
  • Respiration*
  • Spinal Cord / anatomy & histology
  • Spinal Cord / physiology*
  • Time Factors