Robotic systems to assist with pedicle screw placement have recently emerged in the field of spine surgery. Here, the authors systematically reviewed the literature for evidence of these robotic systems and their utility. Thirty-four studies that reported the use of spinal instrumentation with robotic assistance and met inclusion criteria were identified. The outcome measures gathered included: pedicle screw accuracy, indications for surgery, rates of conversion to an alternative surgical method, radiation exposure, and learning curve. In our search there were five different robotic systems identified. All studies reported accuracy and the most commonly used accuracy grading scale was the Gertzbein Robbins scale (GRS). Accuracy of clinically acceptable pedicle screws, defined as < 2 mm cortical breech, ranged from 80% to 100%. Many studies categorized indications for robotic surgery with the most common being degenerative entities. Some studies reported rates of conversion from robotic assistance to manual instrumentation due to many reasons, with robotic failure as the most common. Radiation exposure data revealed a majority of studies reported less radiation using robotic systems. Studies looking at a learning curve effect with surgeon use of robotic assistance were not consistent across the literature. Robotic systems for assistance in spine surgery have continued to improve and the accuracy of pedicle screw placement remains superior when compared to free-hand technique, however rates of manual conversion are significant. Currently, these systems are successfully employed in various pathological entities where trained spine surgeons can be safe and accurate regardless of robotic training.
Copyright © 2021 Elsevier Ltd. All rights reserved.